教育经历:

2005年9月至2009年6月, 本科,3522vip浦京集团官网

2009年9月至2014年6月, 硕博连读,3522vip浦京集团官网

 

工作经历:

2014年7月至2016年7月     丘成桐数学科学中心     博士后研究员

2016年8月至2019年4月    3522vip浦京集团官网      特聘副研究员

2019年5月至今     3522vip浦京集团官网      副教授

 

研究领域:

几何分析;度量几何。近年来的研究兴趣主要是:Ricci曲率有下界的流形和度量空间,几何流及其应用,等周问题。

 

研究成果:

  1. A Simple Method for the Optimal Transportation. Comm. Anal. Geom., 22 (2), 371-386, 2014.

  2. (with Bing-Long Chen) Path-connectedness of the moduli space of metrics with positive isotropic curvature on 4-manifolds. Math. Ann. 366 (1). 819–851, 2016.

  3. (with Bing-Long Chen) Four-manifolds with positive isotropic curvature. Front. Math. China, 11 (5), 1123-1149, 2016.

  4. Noncompact RCD(0,N) spaces with linear volume growth. J. Geom. Anal., 28 (2), 1005–1051, 2018.

  5. On the dimensions of spaces of harmonic functions with polynomial growth. Acta Math. Sci. 39B (5), 1219-1234, 2019.

  6. On the asymptotic behavior of the dimension of spaces of harmonic functions with polynomial growth. J. Reine Angew. Math762, 281–306, 2020. 

  7. An almost rigidity theorem and its applications to noncompact RCD(0,N) spaces with linear volume growth. Commun. Contemp. Math., 22(4), 2020.

  8. Counting dimensions of L-harmonic functions with exponential growth. Geom. Dedicata, 209, 31–42, 2020.

  9. Almost rigidity of convex hypersurfaces via the extinction time of mean curvature flow.  Bull. Korean Math. Soc., 58, 877–884, 2021.

  10. Local isoperimetric inequalities in metric measure spaces verifying measure contraction propertyManuscripta Math.,  171 , no. 1-2, 1–21,  2023. 

  11. Harmonic functions with polynomial growth on manifolds with nonnegative Ricci curvature. Calc. Var. Partial Differential Equations, 62  no. 4, Paper No. 111, 2023.

  12. (with Hongzhi Huang) Almost splitting maps, transformation theorems and smooth fibration theorems. Adv. Math., 457, Paper No. 109914,  2024.

  13. (with Shuai Liu) Optimal asymptotic volume ratio for noncompact 3-manifolds with asymptotically nonnegative Ricci curvature and a uniformly positive scalar curvature lower bound. https://arxiv.org/abs/2405.09379.