"可积系统及其应用学术研讨会"系列讲座

"可积系统及其应用学术研讨会"系列讲座

发布人:高级管理员 发布日期:2018-03-16
主题
"可积系统及其应用学术研讨会"系列讲座
活动时间
-
活动地址
新数学楼416

时间: 2018.03.1618, 8:3017:50

地点: 新数学楼416

 

报告内容(按姓名拼音排序)

 

陈勇

题目:Localized Wave

摘要:I introduce briefly the development of the localized waves, and then the major work about our team to the localized waves. It mainly contains four aspects: Darboux transformation, KP reductionthe Hirota bilinear method and nonlocal symmetry to construct localized wave.

简介:华东师范大学计算机科学与软件工程学院教授,博导。

 

程艺

题目:Symmetry Constraint and Integrability

摘要:Symmetry Constraint and Integrability.

简介:中国科学技术大学数学科学学院教授。 曾任中国科学技术大学数学系主任。19986月任中国科学技术大学副校长。19991月起兼任研究生院院长。主要从事"非线性科学"领域中若干数学理论的研究与应用工作。1987年以来,承担过"国家杰出青年科学基金"、霍英东青年教师基金和国家教委优秀人才跟踪基金项目研究,目前承担国家973项目"非线性科学"。近几年来在国内外学术期刊上共发表论文50篇。曾获中国科学院自然科学奖二等奖、中国科学院青年科学家奖二等奖、国家教委霍英东青年教师奖一等奖各1项。

 

范恩贵

题目: Riemann-Hilbert  Approach to Asymptotic of  Polynomials and Random Matrices

摘要: In this talk,  we first show the connections  among the Riemann-Hilbert problem, orthogonal polynomials and random matrices.  Then we   show  how to use Riemann-hilbert approach to analyze asympototic of orthogonal  polynomials and random matrices.

简介:复旦大学数学科学学院教授,博士生导师,获2017年度“谷超豪奖”。

 

方博汉

题目: Explicit modularity from the remodeling conjecture

摘要: I will describe how to use the BKMP remodeling conjecture to express open-closed Gromov-Witten invariants of the canonical bundle of a toric surface in terms of modular and Jacobi forms. As a consequence, we can obtain the Yamaguch-Yau type functional equation, which is related to the holomorphic anomaly equation and the polynomiality of the generating functions. This talk is based on the joint works with Yongbin Ruan, Yingchun Zhang and Jie Zhou.

简介:北京国际数学研究中心研究员。

 

耿献国

题目:Quasi-periodic  solutions of the coupled long wave-short wave resonance equations

摘要:With the aid of Lenard recursion equations, we derive the Lax pair of the coupled long wave-short wave resonance hierarchy, in which the rst nontrivial member is the

coupled long wave-short wave resonance equations. The properties of the associated Riemann surface are under consideration, especially including arithmetic genus and

holomorphic dierentials. By comparing the asymptotic expansions for the Baker-Akhiezer function and its Riemann theta function representation, we obtain the explicit solutions of the entire coupled long wave-short wave resonance hierarchy in terms of the Riemann theta function.

简介:教授, 博士生导师。现任郑州大学数学与统计学院院长, 中国数学会理事,河南省数学会理事长。美国《数学评论》(Mathematical Reviews)和德国《数学文摘》(Zentralblatt Math)评论员。获国务院政府特殊津贴,河南省优秀专家,河南省青年科技奖,河南省自然科学优秀论文一等奖六项。

 

郭旗

题目:振荡型非局域非线性系统中的孤子研究

摘要:很多非线性物理过程的非线性均具有非局域性,其数学模型是微分积分方程。本报告将介绍非线性响应函数为振荡型的非局域非线性过程,重点是对其光学物理性质的讨论。

简介:华南师范大学信息光电子科技学院教授,博士生导师。1993年任华南师范大学量子电子学研究所副所长,1996年—1998年任该所所长,1997年—2009年任华南师范大学校长助理,2003年-2005年任华南师范大学传输光学实验室主任。2005年起任信息光电子科技学院副院长,200510月起任光子信息技术广东省高校重点实验室主任,20118月起任广东省微纳光子功能材料与器件重点实验室主任。郭旗博士一直从事非线性光学基础研究工作。分别获得1992年度广东省自然科学三等奖(第一获奖者) 1994年度山西省科技进步奖理论一等奖(第一获奖者)、2001年度和2005年度广东省科学技术奖(自然科学类)二等奖(排名第二和主要参加者)。从1993年开始享受国务院政府特殊津贴。1993年被授予广东省优秀青年荣誉称号。1996年被列入广东省培养跨世纪人才的“千百十工程”计划。

 

何伟强

题目: fomality of  orbifold Landau-Ginzburg B-model of 2 dimension

摘要: Suppose G is an abelian group acting on C^n, W is a G-invariant polynomial, the W-twisted Hochschild cochain has a differential graded Lie algebra (dgla) structure. And its cohomology is isomorphic to orbifold Jacobian ring. Starting from an element of the cohomology, can we deform the dgla to an L-infinity algebra?

We will answer the question in the case of n=2. This is a joint work with Si Li, Yifan Li.

简介:丘成桐数学科学中心博士后。

 

胡星标

题目: 正交多项式和可积系统

摘要: : In the talk, I will report some new results on the connection between orthogonal polynomials and integrable systems. This is joint work with Xiangke Chang, Xiaomin Chen,Yi He and Shihao Li.

简介:中国科学院数学与系统科学研究院研究员,博士生导师。

 

李思

题目: Seiberg-Witten differential via primitive forms

摘要: We show that three-fold quasi-homogeneous isolated rational singularity leads to four dimensional N=2 superconformal field theories. The Seiberg-Witten differential is given by the Gelfand-Leray form of K. Saito's primitive form. This generalizes the algebraic integrable system of Seiberg-Witten geometry to higher dimensions and to include irrelevant deformations. This is joint work with D. Xie and S.-T. Yau.

简介:清华大学数学科学系教授。2005年获得中国科大数学硕士;2011年获得哈佛大学数学系博士学位。其后曾任西北大学Boas助理教授、波士顿大学助理教授和东京大学访问副科学家。 2016年获晨兴数学奖金奖。

 

刘青平

题目:Integrability of the extended equation of long waves

摘要: An extension of the equation of long waves was proposed by Boris Kupershmidt. We will construct a Lax representation for this system and show the relationship with a system associated with the energy-dependent Schrodinger problem of Antonowicz and Fordy. Possible modifications and dual systems are also worked out.

简介:教授,博士生导师。国务院政府特殊津贴获得者,北京市教学名师。现任中国矿业大学(北京)理学院院长。先后入选江苏省“333人才工程”,获得第八届孙越琦青年科技奖、教育部资助优秀年轻教师基金,列入煤炭系统专业技术拔尖人才、教育部跨世纪优秀人才培养计划。

 

刘小博

题目:Connecting Hodge integrals to Gromov-Witten invariants by Virasoro operators

摘要:Kontsevich-Witten tau function and Hodge tau functions are important tau functions for KP hierarchy which arise in geometry of moduli space of curves. Alexandrov conjectured that these two functions can be connected by Virasoro operators. In a joint work with Gehao Wang, we have proved Alexandrov's conjecture. In a joint work with Haijiang Yu, we show that this conjecture can also be generalized to Gromov-Witten invariants and Hodge integrals over moduli spaces of stable maps to smooth projective varieties.

简介:北京大学数学科学学院教授。

 

周坚

题目:On absolute n-point functionabsolute Fock space

摘要:这里绍一下我关于所谓absolute n-point functionabsolute Fock space 的工作。

简介:清华大学数学系教授,2005年国家杰出青年基金、2009年国家“百千万人才工程”。

 

朱佐农

题目: On the complex short pulse equation

摘要: Nonlinear Schr¨odinger (NLS) equation, short pulse (SP) equation and complex short pulse (CSP) equation have important applications in nonlinear optics. They can be derived from the Maxwell equation. In this talk, we will address some topics on the CSP equation. We will report our results for a coupled focusing-defocusing CSP equation. The bright-bright, bright-dark and dark-dark soliton, breather, and rogue wave solutions of the coupled focusingdefocusing

CSP equation will be discussed. This talk is based on the joint work with B. F. Feng, L. M. Ling and J. Yang.

简介:上海交通大学数学科学学院教授,博士生导师。

 

左达峰

题目:Frobenius 流形和Frobenius代数值的可积系统

摘要: 我们向大家简单汇报一下关于Frobenius代数值

的可积系统及其相关课题的一些研究结果。

简介:中国科学技术大学数学科学学院教授,2013年入选教育部新世纪优秀人才支持计划。

 

欢迎广大师生参加!

3522vip浦京集团官网

2018313