数学分析1
发布人:高级管理员
发布日期:2015-01-10
课程编号:3412202
课程名称(中文):数学分析
课程名称(英文):Mathematical Analysis
学分数/开课学期:14/1
课程类别:专业必修
面赂专业:信息与计算科学
课程负责人:贾保国
该课程包括以下内容:
1.实数理论部分,包括确界原理,函数的概念,基本初等函数的性质。
2.数列极限是极限概念的基础,它包括收敛数列的性质,和数列极限存在的条件。
3.函数极限包括函数极限的概念、性质、存在的条件,两个重要极限和无穷小量和无穷大量。
4.函数的连续性包括:连续的概念、连续函数的性质(保号性、局部有界性、反函数的连续性、四则运算)、初等函数的连续性。
5.导数与微分包括:导数的概念、导数的几何意义、四则运算、复合函数求导数、高阶导数和微分。
6.Lagrange中值定理、Cauchy中值定理、求不定式极限的罗比塔法则、台老公式、极大值极小值、最大值最小值、函数的凸凹性与拐点。
7.实数的完备性包括:区间套定理与Cauchy收敛准则、聚点定理与有限覆盖定理、闭区间上的连续函数的性质。
8.不定积分与定积分。
课程内容简介(英文):The course includes the following contents:
- Real number theorem includes the least upper and lower bound, the notation of functions and the properties of the basic fundamental functions.
- The notation of the sequence of real numbers, the convergence of sequence, monotone sequences and subsequences.
- The limits of functions include notation, properties, existence, the two important limits, infinity and infinitesimal.
- The continuity of functions includes continuity, the extreme value theorem, the continuity of inverse function and the properties of continuous functions.
- The derivative of a real function.
- Mean value theorems, L’Hospital’s Rule, derivatives of higher order, Taylor’s theorem, maximum and minimum.
- The nested theorem and Cauchy theorem, the theorem of limit point and finite covering theorem
- The definition of the integral and criteria for integral bility